By Topic

Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vahidi, A. ; Dept. of Mech. Eng., Clemson Univ., SC ; Stefanopoulou, A. ; Huei Peng

The problem of oxygen starvation in fuel cells coupled with air compressor saturation limits, is addressed in this paper. We propose using a hybrid configuration, in which a bank of ultracapacitors supplements the polymer electrolyte membrane fuel cell during fast current transients. Our objective is to avoid fuel cell oxygen starvation, prevent air compressor surge and choke, and simultaneously match an arbitrary level of current demand. We formulate the distribution of current demand between the fuel cell and the bank of ultracapacitors in a model predictive control framework, which can handle multiple constraints of the hybrid system. Simulation results show that reactant deficit during sudden increase in stack current is reduced from 50% in stand-alone architecture to less than 1% in the hybrid configuration. In addition, the explicit constraint handling capability of the current management scheme prevents compressor surge and choke and maintains the state-of-charge of the ultracapacitor within feasible bounds

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 6 )