By Topic

Online task recognition and real-time adaptive assistance for computer-aided machine control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ekvall, S. ; R. Inst. of Technol., Stockholm ; Aarno, D. ; Kragic, D.

Segmentation and recognition of operator-generated motions are commonly facilitated to provide appropriate assistance during task execution in teleoperative and human-machine collaborative settings. The assistance is usually provided in a virtual fixture framework where the level of compliance can be altered online, thus improving the performance in terms of execution time and overall precision. However, the fixtures are typically inflexible, resulting in a degraded performance in cases of unexpected obstacles or incorrect fixture models. In this paper, we present a method for online task tracking and propose the use of adaptive virtual fixtures that can cope with the above problems. Here, rather than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles and deviate from the model. To allow this, the probability of following a certain trajectory (subtask) is estimated and used to automatically adjusts the compliance, thus providing the online decision of how to fixture the movement

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 5 )