By Topic

Stochastic Automata-Based Estimators for Adaptively Compressing Files With Nonstationary Distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Rueda ; Dept. of Comput. Sci., Univ. of Concepcion ; B. J. Oommen

This correspondence shows that learning automata techniques, which have been useful in developing weak estimators, can be applied to data compression applications in which the data distributions are nonstationary. The adaptive coding scheme utilizes stochastic learning- based weak estimation techniques to adaptively update the probabilities of the source symbols, and this is done without resorting to either maximum likelihood, Bayesian, or sliding-window methods. The authors have incorporated the estimator in the adaptive Fano coding scheme and in an adaptive entropy-based scheme that "resembles" the well-known arithmetic coding. The empirical results obtained for both of these adaptive methods are obtained on real-life files that possess a fair degree of nonstationarity. From these results, it can be seen that the proposed schemes compress nearly 10% more than their respective adaptive methods that use maximum-likelihood estimator-based estimates

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:36 ,  Issue: 5 )