By Topic

Bayesian Model Averaging of Naive Bayes for Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Santafe ; Dept. of Comput. Sci. & Artificial Intelligence, Univ. of the Basque Country ; J. A. Lozano ; P. Larranaga

This paper considers a Bayesian model-averaging (MA) approach to learn an unsupervised naive Bayes classification model. By using the expectation model-averaging (EMA) algorithm, which is proposed in this paper, a unique naive Bayes model that approximates an MA over selective naive Bayes structures is obtained. This algorithm allows to obtain the parameters for the approximate MA clustering model in the same time complexity needed to learn the maximum-likelihood model with the expectation-maximization algorithm. On the other hand, the proposed method can also be regarded as an approach to an unsupervised feature subset selection due to the fact that the model obtained by the EMA algorithm incorporates information on how dependent every predictive variable is on the cluster variable

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:36 ,  Issue: 5 )