Cart (Loading....) | Create Account
Close category search window
 

Evolving Compact and Interpretable Takagi–Sugeno Fuzzy Models With a New Encoding Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Min-Soeng Kim ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejon ; Chang-Hyun Kim ; Ju-Jang Lee

Developing Takagi-Sugeno fuzzy models by evolutionary algorithms mainly requires three factors: an encoding scheme, an evaluation method, and appropriate evolutionary operations. At the same time, these three factors should be designed so that they can consider three important aspects of fuzzy modeling: modeling accuracy, compactness, and interpretability. This paper proposes a new evolutionary algorithm that fulfills such requirements and solves fuzzy modeling problems. Two major ideas proposed in this paper lie in a new encoding scheme and a new fitness function, respectively. The proposed encoding scheme consists of three chromosomes, one of which uses unique chained possibilistic representation of rule structure. The proposed encoding scheme can achieve simultaneous optimization of parameters of antecedent membership functions and rule structures with the new fitness function developed in this paper. The proposed fitness function consists of five functions that consider three evaluation criteria in fuzzy modeling problems. The proposed fitness function guides evolutionary search direction so that the proposed algorithm can find more accurate compact fuzzy models with interpretable antecedent membership functions. Several evolutionary operators that are appropriate for the proposed encoding scheme are carefully designed. Simulation results on three modeling problems show that the proposed encoding scheme and the proposed fitness functions are effective in finding accurate, compact, and interpretable Takagi-Sugeno fuzzy models. From the simulation results, it is shown that the proposed algorithm can successfully find fuzzy models that approximate the given unknown function accurately with a compact number of fuzzy rules and membership functions. At the same time, the fuzzy models use interpretable antecedent membership functions, which are helpful in understanding the underlying behavior of the obtained fuzzy models

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 5 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.