By Topic

Metric Analysis and Data Validation Across Fortran Projects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basili, V.R. ; Department of Computer Science, university of Maryland ; Selby, R.W., Jr. ; Phillips, T.

The desire to predict the effort in developing or explain the quality of software has led to the proposal of several metrics in the literature. As a step toward validating these metrics, the Software Engineering Laboratory has analyzed the Software Science metrics, cyclomatic complexity, and various standard program measures for their relation to 1) effort (including design through acceptance testing), 2) development errors (both discrete and weighted according to the amount of time to locate and frix), and 3) one another. The data investigated are collected from a production Fortran environment and examined across several projects at once, within individual projects and by individual programmers across projects, with three effort reporting accuracy checks demonstrating the need to validate a database. When the data come from individual programmers or certain validated projects, the metrics' correlations with actual effort seem to be strongest. For modules developed entirely by individual programmers, the validity ratios induce a statistically significant ordering of several of the metrics' correlations. When comparing the strongest correlations, neither Software Science's E metric, cyclomatic complexity nor source lines of code appears to relate convincingly better with effort than the others

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-9 ,  Issue: 6 )