By Topic

Feature Reduction via Generalized Uncorrelated Linear Discriminant Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jieping Ye ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ ; Janardan, R. ; Qi Li ; Haesun Park

High-dimensional data appear in many applications of data mining, machine learning, and bioinformatics. Feature reduction is commonly applied as a preprocessing step to overcome the curse of dimensionality. Uncorrelated linear discriminant analysis (ULDA) was recently proposed for feature reduction. The extracted features via ULDA were shown to be statistically Uncorrelated, which is desirable for many applications. In this paper, an algorithm called ULDA/QR is proposed to simplify the previous implementation of ULDA. Then, the ULDA/GSVD algorithm is proposed, based on a novel optimization criterion, to address the singularity problem which occurs in undersampled problems, where the data dimension is larger than the sample size. The criterion used is the regularized version of the one in ULDA/QR. Surprisingly, our theoretical result shows that the solution to ULDA/GSVD is independent of the value of the regularization parameter. Experimental results on various types of data sets are reported to show the effectiveness of the proposed algorithm and to compare it with other commonly used feature reduction algorithms

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 10 )