By Topic

Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wing-Kin Ma ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Ba-Ngu Vo ; S. S. Singh ; A. Baddeley

Speaker location estimation techniques based on time-difference-of-arrival measurements have attracted much attention recently. Many existing localization ideas assume that only one speaker is active at a time. In this paper, we focus on a more realistic assumption that the number of active speakers is unknown and time-varying. Such an assumption results in a more complex localization problem, and we employ the random finite set (RFS) theory to deal with that problem. The RFS concepts provide us with an effective, solid foundation where the multispeaker locations and the number of speakers are integrated to form a single set-valued variable. By applying a sequential Monte Carlo implementation, we develop a Bayesian RFS filter that simultaneously tracks the time-varying speaker locations and number of speakers. The tracking capability of the proposed filter is demonstrated in simulated reverberant environments

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 9 )