By Topic

The power dissipation method and kinematic reducibility of multiple-model robotic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Murphey, T.D. ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO ; Burdick, J.W.

This paper develops a formal connection between the power dissipation method (PDM) and Lagrangian mechanics, with specific application to robotic systems. Such a connection is necessary for understanding how some of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a multiple-model system, and then show that multiple-model systems arise naturally in a number of instances, including those arising in cases traditionally addressed using the PDM. We then give necessary and sufficient conditions for a dynamic multiple-model system to be reducible to a kinematic multiple-model system. We use this result to show that solutions to the PDM are actually kinematic reductions of solutions to the Euler-Lagrange equations. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts, such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical systems

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )