Cart (Loading....) | Create Account
Close category search window
 

PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paraskevopoulos, P.N. ; Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens ; Pasgianos, G.D. ; Arvanitis, K.G.

The control of unstable first-order plus dead-time (UFOPDT) processes using proportional-integral (PI) and proportional-integral-differential (PID) type controllers is investigated in this brief. New tuning rules based on the exact satisfaction of gain and phase margin specifications are proposed. The tuning rules are given in the form of iterative algorithms, as well as in the form of accurate, analytical approximations. Moreover, several specific functions, related to the crossover frequencies of the Nyquist plot and to the feasible design specifications for a given process, are derived. These functions, which are particularly useful for the general design of PI- and PID-type controllers for UFOPDT processes are accurately approximated, in order to simplify the tuning procedure. With the proposed approximations, the tuning rules reported in this brief require relatively small computational effort and are particularly useful for online applications

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 5 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.