By Topic

Stable task load balancing strategies for Cooperative control of networked autonomous air vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Finke, J. ; Dept. of Electr. & Comput., Ohio State Univ., Columbus, OH ; Passino, K.M. ; Sparks, Andrew G.

We introduce a mathematical model for the study of cooperative control problems for multiple autonomous air vehicles (AAVs) connected via a communication network. We propose a cooperative control strategy based on task-load balancing that seeks to ensure that no vehicle is underutilized and we show how to characterize task-load balancing as a stability property. Then, using Lyapunov stability analysis, we provide conditions under which task-load balancing is achieved even in the presence of communication delays. Finally, we investigate performance properties of the cooperative controller using Monte Carlo simulations. This shows the benefits of cooperation and the effects of network delays and communication topology on performance

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 5 )