By Topic

Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Edward Zhang ; Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK ; Paul Beard

An optical system for rapidly mapping broadband ultrasound fields with high spatial resolution has been developed. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry Perot sensing interferometer (FPI). By using a PC-controlled galvanometer mirror to line-scan a focused laser beam over the surface of the FPI, and a wavelength-tuned phase bias control system to optimally set the FPI working point, a notional 1D ultrasound array was synthesized. This system enabled ultrasound fields to be mapped over an aperture of 40 mm, in 50-μm steps with an optically defined element size of 50 μm and an acquisition time of 50 ms per step. The sensor comprised a 38-μm polymer film FPI which was directly vacuum-deposited onto an impedance-matched polycarbonate backing stub. The -3 dB acoustic bandwidth of the sensor was 300 kHz to 28 MHz and the peak noise-equivalent-pressure was 10 kPa over a 20-MHz measurement bandwidth. To demonstrate the system, the outputs of various planar and focused pulsed ultrasound transducers with operating frequencies in the range 3.5 to 20 MHz were mapped. It is considered that this approach offers a practical and inexpensive alternative to piezoelectric-based arrays and scanning systems for rapid transducer field characterization and biomedical and industrial ultrasonic imaging applications.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:53 ,  Issue: 7 )