By Topic

Estimating parameterized scalable models from the best linear approximation of nonlinear systems for accurate high-level simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ludwig De Locht ; Interuniversity MicroElectron. Center, Heverlee, Belgium ; G. Vandersteen ; Y. Rolain ; R. Pintelon

System designers of communication systems need to compare the simulated behavior of a system with the linear and nonlinear specifications. They need high-level models to perform these simulations fast. The existing high-level models for nonlinear components do not scale smoothly with external parameters like the input power. To overcome this problem, a modeling technique based on the best linear approximation is developed. The parameterized models describe trajectories of the poles and zeros as a function of the input power. The resulting models accurately describe both the linear and nonlinear behavior of the system components. They can easily be implemented in modern simulators.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:55 ,  Issue: 4 )