Cart (Loading....) | Create Account
Close category search window
 

On Composing Stream Applications in Peer-to-Peer Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohui Gu ; IBM Thomas J. Watson Res. Center, Hawthorne, NY ; Nahrstedt, K.

Stream processing has become increasingly important as many emerging applications call for continuous real-time processing over data streams, such as voice-over-IP telephony, security surveillance, and sensor data analysis. In this paper, we propose a composable stream processing system for cooperative peer-to-peer environments. The system can dynamically select and compose stream processing elements located on different peers into user desired applications. We investigate multiple alternative approaches to composing stream applications: 1) global-state-based centralized versus local-state-based distributed algorithms for initially composing stream applications at setup phase. The centralized algorithm performs periodical global state maintenance while the distributed algorithm performs on-demand state collection. 2) Reactive versus proactive failure recovery schemes for maintaining composed stream applications during runtime. The reactive failure recovery algorithm dynamically recomposes a new stream application upon failures while the proactive approach maintains a number of backup compositions for failure recovery. We conduct both theoretical analysis and experimental evaluations to study the properties of different approaches. Our study illustrates the performance and overhead trade-offs among different design alternatives, which can provide important guidance for selecting proper algorithms to compose stream applications in cooperative peer-to-peer environments

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.