By Topic

Delay-dependent state estimation for delayed neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong He ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Qing-Guo Wang ; Min Wu ; Chong Lin

In this letter, the delay-dependent state estimation problem for neural networks with time-varying delay is investigated. A delay-dependent criterion is established to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. The proposed method is based on the free-weighting matrix approach and is applicable to the case that the derivative of a time-varying delay takes any value. An algorithm is presented to compute the state estimator. Finally, a numerical example is given to demonstrate the effectiveness of this approach and the improvement over existing ones.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 4 )