By Topic

A cellular-band CDMA 0.25-/spl mu/m CMOS LNA linearized using active post-distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Namsoo Kim ; Qualcomm, San Diego, CA, USA ; V. Aparin ; K. Barnett ; C. Persico

The theory of a linearization method using active post-distortion (APD) is explained for low-frequency and high-frequency applications. The low-frequency cancellation is explained in power series format and the high-frequency cancellation is explained in Volterra series format. The method is utilized for a cellular band (869-894 MHz) CDMA low-noise amplifier (LNA), which is implemented in 0.25-mum CMOS process. The LNA achieves 1.2 dB NF, 16.2 dB power gain, and +8 dBm IIP3 while consuming 12 mA current from 2.6 V supply voltage. It shows 13.5 dB of IM3 product reduction with 0.15 dB NF penalty in comparison with an LNA which does not use the APD method

Published in:

IEEE Journal of Solid-State Circuits  (Volume:41 ,  Issue: 7 )
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal