By Topic

Convergence results for the particle PHD filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Clark, D.E. ; Ocean Syst. Lab., Heriot-Watt Univ., Edinburgh ; Bell, J.

Bayesian single-target tracking techniques can be extended to a multiple-target environment by viewing the multiple-target state as a random finite set, but evaluating the multiple-target posterior distribution is currently computationally intractable for real-time applications. A practical alternative to the optimal Bayes multitarget filter is the probability hypothesis density (PHD) filter, which propagates the first-order moment of the multitarget posterior instead of the posterior distribution itself. It has been shown that the PHD is the best-fit approximation of the multitarget posterior in an information-theoretic sense. The method avoids the need for explicit data association, as the target states are viewed as a single global target state, and the identities of the targets are not part of the tracking framework. Sequential Monte Carlo approximations of the PHD using particle filter techniques have been implemented, showing the potential of this technique for real-time tracking applications. This paper presents mathematical proofs of convergence for the particle filtering algorithm and gives bounds for the mean-square error

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 7 )