By Topic

Local Steerable Phase (LSP) Feature for Face Representation and Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang Xiaoxun ; Beijing Institute of Technology, Beijing 100081, P.R. CHINA ; Jia Yunde

In this paper, we propose a novel local steerable phase (LSP) feature extracted from the face image using steerable filter for face representation and recognition. Steerable filter is a kind of oriented filters. It is rotated very efficiently by taking a suitable linear combination of basis filters and allows adaptive control over phase as well as orientation. Phase information provided by steerable filter is locally stable with respect to scale, noise and brightness changes. Furthermore, steerable filter is implemented within a Gaussian pyramid to make use of discriminative power in the scale-space of face images. Each face is represented as multiple "steerablefaces" of different scales and orientations. With simple down-sampling, all the steerablefaces are concatenated to an augmented feature vector for evaluating similarity between face images. A nearest-neighbor classifier based on local weighted phase-correlation is used for final decision rule. Experimental results on FERET and XM2VTS databases demonstrate the performance of the proposed method.

Published in:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference: