By Topic

Clustering Appearance for Scene Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koppal, S.J. ; Carnegie Mellon University, Pittsburgh, USA ; Narasimhan, S.G.

We propose a new approach called "appearance clustering" for scene analysis. The key idea in this approach is that the scene points can be clustered according to their surface normals, even when the geometry, material and lighting are all unknown. We achieve this by analyzing an image sequence of a scene as it is illuminated by a smoothly moving distant source. Each pixel thus gives rise to a "continuous appearance profile" that yields information about derivatives of the BRDF w.r.t source direction. This information is directly related to the surface normal of the scene point when the source path follows an unstructured trajectory (obtained, say, by "hand-waving"). Based on this observation, we transform the appearance profiles and propose a metric that can be used with any unsupervised clustering algorithm to obtain iso-normal clusters. We successfully demonstrate appearance clustering for complex indoor and outdoor scenes. In addition, iso-normal clusters serve as excellent priors for scene geometry and can strongly impact any vision algorithm that attempts to estimate material, geometry and/or lighting properties in a scene from images. We demonstrate this impact for applications such as diffuse and specular separation, both calibrated and uncalibrated photometric stereo of non-lambertian scenes, light source estimation and texture transfer.

Published in:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

2006