By Topic

Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stampfer, C. ; Dept. of Micro & Nanosyst., Swiss Fed. Inst. of Technol., Zurich ; Jungen, Alain ; Hierold, Christofer

We present a fabrication technique for discrete, released carbon-nanotube-based nanomechanical force sensors. The fabrication technique uses prepatterned coordinate markers to align the device design to predeposited single-walled carbon nanotubes (SWNTs): Atomic force microscope (AFM) images are recorded to determine spatial orientation and location of each discrete nanotube to be integrated in a nanoscaled force sensor. Electron beam lithography is subsequently used to pattern the metallic electrodes for the nanoscale structures. Diluted hydrofluoric acid etching followed by critical point drying completes the nanosized device fabrication. We use discrete, highly purified, and chemically stable carbon nanotubes as active elements. We show AFM and scanning electron microscope images of the successfully realized SWNTs embedded nanoelectromechanical systems (NEMS). Finally, we present electromechanical measurements of the suspended SWNT NEMS structures

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 3 )