Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Spatial resolution analysis of iterative image reconstruction with separate regularization of real and imaginary parts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olafsson, V. ; Dept. of EECS, Michigan Univ., MI ; Fessler, J.A. ; Noll, D.C.

A common method of improving the conditioning in iterative image reconstruction is to include regularization in the reconstruction algorithm. One such regularization is the roughness penalty, which when used in the algorithm encourages smoother images. For complex valued images, the roughness penalty typically penalizes equally the real and imaginary parts. The desired resolution of the reconstructed image can then be evaluated using the local impulse response. A fast algorithm to calculate it was developed for the typical roughness penalty, used for matching the regularization parameter expediently to the desired resolution. For some cases its advantageous to penalize independently the real and imaginary parts. This paper proposes a fast algorithm to calculate the local impulse response for that penalty and applies it to an fMRI reconstruction problem

Published in:

Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on

Date of Conference:

6-9 April 2006