Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Current-Based Slippage Detection and Odometry Correction for Mobile Robots and Planetary Rovers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Ojeda, L. ; Adv. Technol. Lab., Michigan Univ., Ann Arbor, MI ; Cruz, D. ; Reina, G. ; Borenstein, J.

This paper introduces a novel method for wheel-slippage detection and correction based on motor current measurements. Our proposed method estimates wheel slippage from motor current measurements, and adjusts encoder readings affected by wheel slippage accordingly. The correction of wheel slippage based on motor currents works only in the direction of motion, but not laterally, and it requires some knowledge of the terrain. However, this knowledge does not have to be provided ahead of time by human operators. Rather, we propose three tuning techniques for determining relevant terrain parameters automatically, in real time, and during motion over unknown terrain. Two of the tuning techniques require position ground truth (i.e., GPS) to be available either continuously or sporadically. The third technique does not require any position ground truth, but is less accurate than the two other methods. A comprehensive set of experimental results have been included to validate this approach

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 2 )