Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Reliable channel regions for good binary codes transmitted over parallel channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruoheng Liu ; WINLAB, Rutgers Univ., North Brunswick, NJ, USA ; Spasojevic, P. ; Soljanin, E.

We study the average error probability performance of binary linear code ensembles when each codeword is divided into J subcodewords with each being transmitted over one of J parallel channels. This model is widely accepted for a number of important practical channels and signaling schemes including block-fading channels, incremental redundancy retransmission schemes, and multicarrier communication techniques for frequency-selective channels. Our focus is on ensembles of good codes whose performance in a single channel model is characterized by a threshold behavior, e.g., turbo and low-density parity-check (LDPC) codes. For a given good code ensemble, we investigate reliable channel regions which ensure reliable communications over parallel channels under maximum-likelihood (ML) decoding. To construct reliable regions, we study a modifed 1961 Gallager bound for parallel channels. By allowing codeword bits to be randomly assigned to each component channel, the average parallel-channel Gallager bound is simplified to be a function of code weight enumerators and channel assignment rates. Special cases of this bound, average union-Bhattacharyya (UB), Shulman-Feder (SF), simplified-sphere (SS), and modified Shulman-Feder (MSF) parallel-channel bounds, allow for describing reliable channel regions using simple functions of channel and code spectrum parameters. Parameters describing the channel are the average parallel-channel Bhattacharyya noise parameter, the average channel mutual information, and parallel Gaussian channel signal-to-noise ratios (SNRs). Code parameters include the union-Bhattacharyya noise threshold and the weight spectrum distance to the random binary code ensemble. Reliable channel regions of repeat-accumulate (RA) codes for parallel binary erasure channels (BECs) and of turbo codes for parallel additive white Gaussian noise (AWGN) channels are numerically computed and compared with simulation results based on iterative decoding. In addition, an examp

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 4 )