By Topic

Interpolation over arbitrary topology meshes using a two-phase subdivision scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Zheng ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Y. Cai

The construction of a smooth surface interpolating a mesh of arbitrary topological type is an important problem in many graphics applications. This paper presents a two-phase process, based on a topological modification of the control mesh and a subsequent Catmull-Clark subdivision, to construct a smooth surface that interpolates some or all of the vertices of a mesh with arbitrary topology. It is also possible to constrain the surface to have specified tangent planes at an arbitrary subset of the vertices to be interpolated. The method has the following features: 1) it is guaranteed to always work and the computation is numerically stable, 2) there is no need to solve a system of linear equations and the whole computation complexity is O(K) where K is the number of the vertices, and 3) each vertex can be associated with a scalar shape handle for local shape control. These features make interpolation using Catmull-Clark surfaces simple and, thus, make the new method itself suitable for interactive free-form shape design.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:12 ,  Issue: 3 )