By Topic

Characterizing warfare in red teaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ang Yang ; ARC Centre on Complex Syst., Univ. of New South Wales, Canberra, ACT, Australia ; H. A. Abbass ; R. Sarker

Red teaming is the process of studying a problem by anticipating adversary behaviors. When done in simulations, the behavior space is divided into two groups; one controlled by the red team which represents the set of adversary behaviors or bad guys, while the other is controlled by the blue team which represents the set of defenders or good guys. Through red teaming, analysts can learn about the future by forward prediction of scenarios. More recently, defense has been looking at evolutionary computation methods in red teaming. The fitness function in these systems is highly stochastic, where a single configuration can result in multiple different outcomes. Operational, tactical and strategic decisions can be made based on the findings of the evolutionary method in use. Therefore, there is an urgent need for understanding the nature of these problems and the role of the stochastic fitness to gain insight into the possible performance of different methods. This paper presents a first attempt at characterizing the search space difficulties in red teaming to shed light on the expected performance of the evolutionary method in stochastic environments.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:36 ,  Issue: 2 )