By Topic

Basins of attraction in fully asynchronous discrete-time discrete-state dynamic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahi, J.M. ; Lab. d''Informatique, Univ. de Franche-Comte, Belfort, France ; Contassot-Vivier, S.

This paper gives a formulation of the basins of fixed point states of fully asynchronous discrete-time discrete-state dynamic networks. That formulation provides two advantages. The first one is to point out the different behaviors between synchronous and asynchronous modes and the second one is to allow us to easily deduce an algorithm which determines the behavior of a network for a given initialization. In the context of this study, we consider networks of a large number of neurons (or units, processors, etc.), whose dynamic is fully asynchronous with overlapping updates . We suppose that the neurons take a finite number of discrete states and that the updating scheme is discrete in time. We make no hypothesis on the activation functions of the nodes, so that the dynamic of the network may have multiple cycles and/or basins. Our results are illustrated on a simple example of a fully asynchronous Hopfield neural network.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 2 )