By Topic

Toward the training of feed-forward neural networks with the D-optimum input sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. Witczak ; Inst. of Control & Comput. Eng., Univ. of Zielona Gora, Poland

The problem under consideration is to obtain a measurement schedule for training neural networks. This task is perceived as an experimental design in a given design space that is obtained in such a way as to minimize the difference between the neural network and the system being considered. This difference can be expressed in many different ways and one of them, namely, the D-optimality criterion is used in this paper. In particular, the paper presents a unified and comprehensive treatment of this problem by discussing the existing and previously unpublished properties of the optimum experimental design (OED) for neural networks. The consequences of the above properties are discussed as well. A hybrid algorithm that can be used for both the training and data development of neural networks is another important contribution of this paper. A careful analysis of the algorithm is presented and its comprehensive convergence analysis with the help of the Lyapunov method are given. The paper contains a number of numerical examples that justify the application of the OED theory for neural networks. Moreover, an industrial application example is given that deals with the valve actuator.

Published in:

IEEE Transactions on Neural Networks  (Volume:17 ,  Issue: 2 )