By Topic

Implications of Pb-free microelectronics assembly in aerospace applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shapiro, A.A. ; Electron. Packaging & Fabrication Sect., California Inst. of Technol., Pasadena, CA, USA ; Bonner, J.K. ; Ogunseitan, O.A. ; Saphores, J.-D.M.
more authors

The commercial microelectronics industry is rapidly implementing Pb-free assembly strategies and it should be mostly Pb free within the next decade. This trend is driven by existing and proposed legislation in Europe and in Japan, which has already led a number of firms (including AT&T, IBM, Motorola, Hewlett-Packard, and Intel) to adopt Pb-free implementation programs. This is another sign that the microelectronics industry has become truly global. Following Moore's law, progress in microelectronics is brisk but not uniform: in many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of commercial off-the-shelf parts for military and space applications. We can thus anticipate that the U.S. aerospace industry, which is not subject to foreign legislation, will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper, we provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. Impacts will be felt in the areas of reliability, assembly methods, cost drivers, supply chain selection, and alternative materials selection. In addition, we look at different strategies for implementation. The questions we address include the following: Should companies immediately embark on a program to convert all of their electronics to Pb free? Should they phase it in instead, and if so, over what time frame? Should companies try to comply with industry Pb-free standards? What requirements should flow down to subcontractors and component suppliers? Legislation is pending in a number of states that may affect these decisions and their timing. The U.S. Environmental Protection Agency, through some university programs, is examining the implementation of Pb free as well. Finally, we present data from a portion of a recent NASA project that focuses on finding suitable alterna- ives to eutectic Sn-Pb solders and solder pastes and on determining suitable processing operations in assembling printed wiring boards. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related to Pb-free assembly, either because of the progressive scarcity of eutectic Sn-Pb solder or because of legislation. This paper provides insights into some of the key tradeoffs that should be considered.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:29 ,  Issue: 1 )