Cart (Loading....) | Create Account
Close category search window
 

Metal gate-HfO/sub 2/ MOS structures on GaAs substrate with and without Si interlayer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Ok, Injo ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Kim, Hyoung-Sub ; Manhong Zhang ; Chang-Yong Kang
more authors

In this letter, we studied the effects of post-deposition anneal (PDA) time and Si interface control layer (ICL) on the electrical characteristics of the MOS capacitor with high-/spl kappa/ (HfO/sub 2/) material on GaAs. Thin equivalent oxide thickness (EOT<3 nm) with excellent capacitance-voltage (C-V) characteristics has been obtained. The thickness of the Si ICL and PDA time were correlated with C-V characteristics. It was found that high temperature Si ICL deposition and longer PDA time at 600/spl deg/C improved the C-V shape, leakage current, and especially frequency dispersion (<5%).

Published in:

Electron Device Letters, IEEE  (Volume:27 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.