By Topic

Dynamic fault-tree models for fault-tolerant computer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. B. Dugan ; Dept. of Comput. Sci., Duke Univ., Durham, NC, USA ; S. J. Bavuso ; M. A. Boyd

Reliability analysis of fault-tolerant computer systems for critical applications is complicated by several factors. Systems designed to achieve high levels of reliability frequently employ high levels of redundancy, dynamic redundancy management, and complex fault and error recovery techniques. This paper describes dynamic fault-tree modeling techniques for handling these difficulties. Three advanced fault-tolerant computer systems are described: a fault-tolerant parallel processor, a mission avionics system, and a fault-tolerant hypercube. Fault-tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that can solve those fault-tree models

Published in:

IEEE Transactions on Reliability  (Volume:41 ,  Issue: 3 )