By Topic

Synthesis of Multiplexed Biofluidic Microchips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Lab-on-a-chip (LoC) devices are a class of microfluidic chip-based systems that show a great deal of promise for complex chemical and biological sensing and analysis applications. An approach for full-custom LoC design, which leverages optimal design techniques and system-on-a-chip (SoC) physical design methods, is being developed. Both physical design of the chip and microfluidic performance are simultaneously considered to obtain complete LoC layouts. The proposed approach is demonstrated by designing multiplexed capillary electrophoresis (CE) separation microchips. The authors believe that this approach provides a foundation for future extension to LoC devices in which many different complex chemical operations are performed entirely on-chip.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )