By Topic

Modeling of the wind turbine with a doubly fed induction generator for grid integration studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yazhou Lei ; Dept. of Electr. & Electron. Eng., Univ. Coll. Cork, Ireland ; A. Mullane ; G. Lightbody ; R. Yacamini

Due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. the variable speed wind turbine using a doubly fed induction generator (DFIG) is becoming a popular concept and thus the modeling of the DFIG based wind turbine becomes an interesting research topic. Fundamental frequency models have been presented but these models are often complex with significant numerical overhead as the power converter block consisting of power control, rotor side and grid side converter control and DC link are often simulated in detail. This paper develops a simple DFIG wind turbine model in which the power converter is simulated as a controlled voltage source, regulating the rotor current to meet the command of real and reactive power production. This model has the form of traditional generator model and hence is easy to integrate into the power system simulation tool such as PSS/E. As an example, the interaction between the Arklow Bank Wind Farm and the Irish National Grid was simulated using the proposed model. The model performance and accuracy was also compared with the detailed model developed by DIgSILENT. Considering the simplification adopted for the model development, the limitation and applicability of the model were also discussed in this paper.

Published in:

IEEE Transactions on Energy Conversion  (Volume:21 ,  Issue: 1 )