By Topic

Enhancing the robustness of distributed real-time middleware via end-to-end utilization control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaorui Wang ; Dept. of Comput. Sci. & Eng., Washington Univ., St. Louis, MO ; Chenyang Lu ; Koutsoukos, X.

A key challenge for distributed real-time and embedded (DRE) middleware is maintaining both system reliability and desired real-time performance in unpredictable environments where system workload and resources may fluctuate significantly. This paper presents FC-ORB, a realtime object request broker (ORB) middleware that employs end-to-end utilization control to handle fluctuations in application workload and system resources. The contributions of this paper are three-fold. First, we present a novel utilization control service that enforces desired CPU utilization bounds on multiple processors by adapting the rates of end-to-end tasks within user-specified ranges. Second, we describe a set of middleware-level mechanisms designed to support end-to-end tasks and distributed multi-processor utilization control in a real-time ORB. Finally, we present extensive experimental results on a Linux testbed. Our results demonstrate that our middleware can maintain desired utilizations in face of uncertainties and variations in task execution times, resource contentions from external workloads, and permanent processor failure. FC-ORB demonstrates that the integration of utilization control, end-to-end scheduling and fault-tolerance mechanisms in DRE middleware is a promising approach for enhancing the robustness of DRE applications in unpredictable environments

Published in:

Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International

Date of Conference:

8-8 Dec. 2005