Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Colon emptying induced by sequential electrical stimulation in rats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sevcencu, C. ; Dept. of Health Sci. & Technol., Aalborg Univ., Denmark ; Rijkhoff, N.J.M. ; Sinkjaer, T.

Electrical stimulation could be used to induce colon emptying. The present experiments were performed to establish a stimulation pattern to optimize the stimulation parameters and to test neural involvement in propulsion induced by electrical stimulation. Colon segments were sequentially stimulated using rectangular pulses. The resulting propulsive activity displaced intraluminal content in consecutive propulsion steps. The propulsion steps differed in displacement latency, distance, and velocity along the stimulated colon. Increasing the pulse duration or amplitude resulted in a decrease of the latency. Increasing the stimulation amplitude doubled the displacement distance. The frequencies tested in the present study did not affect propulsion. Inhibition of cholinergic and nitrergic pathways inhibited propulsion. Electrical stimulation can induce colonic propulsion. Motor differences are present along the descending colon. The most suitable combination of pulse parameters regarding colon stimulation is 0.3 ms, 5 mA, 10 Hz. Neural circuits are involved in propulsion when using these values.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 4 )