By Topic

A time-series prediction approach for feature extraction in a brain-computer interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Coyle, D. ; Sch. of Comput. & Intelligent Syst., Univ. of Ulster, Derry, UK ; Prasad, G. ; McGinnity, T.M.

This paper presents a feature extraction procedure (FEP) for a brain-computer interface (BCI) application where features are extracted from the electroencephalogram (EEG) recorded from subjects performing right and left motor imagery. Two neural networks (NNs) are trained to perform one-step-ahead predictions for the EEG time-series data, where one NN is trained on right motor imagery and the other on left motor imagery. Features are derived from the power (mean squared) of the prediction error or the power of the predicted signals. All features are calculated from a window through which all predicted signals pass. Separability of features is achieved due to the morphological differences of the EEG signals and each NNs specialization to the type of data on which it is trained. Linear discriminant analysis (LDA) is used for classification. This FEP is tested on three subjects off-line and classification accuracy (CA) rates range between 88% and 98%. The approach compares favorably to a well-known adaptive autoregressive (AAR) FEP and also a linear AAR model based prediction approach.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 4 )