By Topic

Acceleration and torque redistribution for a dual-manipulator system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Owen, W.S. ; Dept. of Mech. & Ind. Eng., Univ. of Toronto, Ont., Canada ; Croft, E.A. ; Benhabib, B.

Recent research has considered robotic machining as an alternative to traditional computer numerical control machining, particularly for prototyping applications. However, unlike traditional machine tools, robots are subject to relatively larger dynamic disturbances and operate closer to their torque limits. These factors, combined with inaccurate manipulator and machining process models, can cause joint actuator saturation during operation. This paper presents a trajectory planner that will reduce torques that are near saturation by generating trajectories with a weighted pseudoinverse. Using a relative Jacobian, the tool path is resolved into joint trajectories at the acceleration level. This paper presents a new method for selecting the weighting matrix based on the proximity of the joint torques to saturation limits. This weighting reduces the joint accelerations contributing the most to the torques near saturation, thereby reducing the joint torques. The accelerations of other joints increase to satisfy the increased demand. The effectiveness of the acceleration and torque redistribution algorithm has been demonstrated via extensive simulations.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 6 )