By Topic

MRAS observer for sensorless control of standalone doubly fed induction generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cardenas, R. ; Electr. Eng. Dept., Univ. of Magallanes, Punta Arenas, Chile ; Pena, R. ; Proboste, J. ; Asher, G.
more authors

This paper presents an analysis of a model reference adaptive system (MRAS) observer for the sensorless control of a standalone doubly fed induction generator (DFIG). The analysis allows the formal design of the MRAS observer of given dynamics and further allows the prediction of rotor position estimation errors under parameter mismatch. The MRAS observer analysis is experimentally implemented for the vector control of a standalone DFIG feeding a load at constant voltage and frequency. Experimental results, including speed catching of an already spinning machine, are presented and extensively discussed. Although the method is validated for a standalone generator, the proposed MRAS observer can be extended to other applications of the doubly fed induction machine.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 4 )