Cart (Loading....) | Create Account
Close category search window
 

A weighted sum validity function for clustering with a hybrid niching genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Weiguo Sheng ; Dept. of Inf. Syst. & Comput., Brunel Univ., London, UK ; Swift, S. ; Leishi Zhang ; Xiaohui Liu

Clustering is inherently a difficult problem, both with respect to the construction of adequate objective functions as well as to the optimization of the objective functions. In this paper, we suggest an objective function called the Weighted Sum Validity Function (WSVF), which is a weighted sum of the several normalized cluster validity functions. Further, we propose a Hybrid Niching Genetic Algorithm (HNGA), which can be used for the optimization of the WSVF to automatically evolve the proper number of clusters as well as appropriate partitioning of the data set. Within the HNGA, a niching method is developed to preserve both the diversity of the population with respect to the number of clusters encoded in the individuals and the diversity of the subpopulation with the same number of clusters during the search. In addition, we hybridize the niching method with the k-means algorithm. In the experiments, we show the effectiveness of both the HNGA and the WSVF. In comparison with other related genetic clustering algorithms, the HNGA can consistently and efficiently converge to the best known optimum corresponding to the given data in concurrence with the convergence result. The WSVF is found generally able to improve the confidence of clustering solutions and achieve more accurate and robust results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 6 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.