By Topic

Space-time Chase decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Love, D.J. ; Center for Wireless Syst. & Applications, Purdue Univ., West Lafayette, IN, USA ; Hosur, S. ; Batra, A. ; Heath, R.W.

Multiple-antenna wireless systems are of interest because they provide increased capacity over single-antenna systems. Several space-time signaling schemes have been proposed to make use of this increased capacity. Space-time techniques, such as space-time block coding and spatial multiplexing, can all be viewed as signaling with a multidimensional constellation. Because of the large capacity of multiple-input multiple-output (MIMO) channels, these multidimensional constellations often have large cardinalities. For this reason, it is impractical to perform optimal maximum-likelihood (ML) decoding for space-time systems, even for a moderate number of transmit antennas. In this paper, we propose a modified version of the classic Chase decoder for multiple-antenna systems. The decoder applies successive detection to yield an initial estimate of the transmitted bit sequence, constructs a list of candidate symbol vectors using this initial estimate, and then computes bit likelihood information over this list. Three algorithms are presented for constructing the candidate vector list. This decoder can be adjusted to have a fixed or variable complexity, while maintaining performance close to that of an ML decoder.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 5 )