By Topic

Time and space efficient method for accurate computation of error detection probabilities in VLSI circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Rejimon ; Univ. of South Florida, Tampa, FL, USA ; S. Bhanja

The authors propose a novel fault/error model based on a graphical probabilistic framework. They arrive at the logic induced fault encoded directed acrylic graph (LIFE-DAG), which is proven to be a Bayesian network, capturing all spatial dependencies induced by the circuit logic. Bayesian networks are the minimal and exact representation of the joint probability distribution of the underlying probabilistic dependencies that not only use conditional independencies in modelling but also exploit them for achieving minimality and smart probabilistic inference. The detection probabilities also act as a measure of soft error susceptibility (an increased threat in the nano-domain logic block) which depends on the structural correlations of the internal nodes and also on input patterns. Based on this model, they show that they are able to estimate detection probabilities of faults/errors on ISCAS'85 benchmarks with high accuracy, linear space requirement complexity, and with an order of magnitude (≈5 times) reduction in estimation time over corresponding binary decision diagram based approaches.

Published in:

IEE Proceedings - Computers and Digital Techniques  (Volume:152 ,  Issue: 5 )