Cart (Loading....) | Create Account
Close category search window
 

Microfabricated capped channels for biomolecular motor-based transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying-Ming Huang ; Dept. of Bioeng., Pennsylavania State Univ., University Park, PA, USA ; Uppalapati, M. ; Hancock, W.O. ; Jackson, T.N.

Kinesins are molecular motors that transport intracellular cargo along microtubules and provide a model system for force generation that can be exploited for biomotor powered nano- and micro-machines. To use this biological system for microscale transport, the most common approach is to reverse the biological geometry and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of microtubule movements over kinesin-coated surfaces. The open channel approaches used to date are limited because microtubules that lose contact with the kinesin motors rapidly diffuse away. As a step toward making stand-alone devices incorporating kinesin motors and microtubules, we have developed methods to fabricate capped channels that provide three-dimensional microtubule confinement. We first tested the activity of kinesin motors on a range of surfaces and found that motors were functional on a number of hydrophilic surfaces and nonfunctional on hydrophobic surfaces. In this work, SU-8 photoresist is used to fabricate open channels and a layer of bisbenzocyclobutene (BCB) or dry-film photoresist is used to encapsulate the channels. To allow sample introduction, we fabricate a hierarchical series of microfluidic channels. In this approach, macroscale (∼250-μm) channels in glass or silicon substrates are used to hold fine-gauge stainless steel tubing and allow connection to various fluid sources and intermediate scale (∼50-μm) channels fabricated in thick (∼50-μm) dry-film photoresist are used to connect the macroscale channels to microscale (1-15-μm) SU-8 photoresist channels. This paper is the first demonstration of kinesin-based microtubule transport in enclosed microfluidic channels and provides an important step toward packaging these biomolecular motors into functional devices.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.