By Topic

On achieving fairness in the joint allocation of processing and bandwidth resources: principles and algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yunkai Zhou ; MSN Div., Microsoft Corp., Redmond, WA, USA ; Harish Sethu

The problem of achieving fairness in the allocation of the bandwidth resource on a link shared by multiple flows of traffic has been extensively researched over the last decade. However, with the increasing pervasiveness of optical networking and the occasional trend toward using over-provisioning as the solution to bandwidth congestion, a router's processor also becomes a critical resource to which, ideally speaking, all competing flows should have fair access. For example, achieving fairness in the allocation of processing resources can be part of an overall strategy of countering certain kinds of denial of service attacks (such as those based on an excessive use of the router processor by using unnecessary optional headers). In this paper, we investigate the issue of achieving fairness in the joint allocation of the processing and bandwidth resources. We first present a simple but powerful general principle for defining fairness in such systems based on any of the classic notions of fairness such as max-min fairness, proportional fairness, and utility max-min fairness defined for a single resource. We apply our principle to a system with a shared processor and a shared link with max-min fairness as the desired goal. We then propose a practical and provably fair packet-by-packet algorithm for the joint allocation of processing and bandwidth resources. We demonstrate the fairness achieved by our algorithm through simulation results using both synthetic and real gateway traffic traces. The principles and the algorithm detailed in this paper may also be applied in the allocation of other kinds of resources such as power, which is a critical resource in mobile systems.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 5 )