By Topic

Estimating point-to-point and point-to-multipoint traffic matrices: an information-theoretic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yin Zhang ; AT&T Labs.-Res., USA ; Roughan, M. ; Lund, C. ; Donoho, D.L.

Traffic matrices are required inputs for many IP network management tasks, such as capacity planning, traffic engineering, and network reliability analysis. However, it is difficult to measure these matrices directly in large operational IP networks, so there has been recent interest in inferring traffic matrices from link measurements and other more easily measured data. Typically, this inference problem is ill-posed, as it involves significantly more unknowns than data. Experience in many scientific and engineering fields has shown that it is essential to approach such ill-posed problems via "regularization". This paper presents a new approach to traffic matrix estimation using a regularization based on "entropy penalization". Our solution chooses the traffic matrix consistent with the measured data that is information-theoretically closest to a model in which source/destination pairs are stochastically independent. It applies to both point-to-point and point-to-multipoint traffic matrix estimation. We use fast algorithms based on modern convex optimization theory to solve for our traffic matrices. We evaluate our algorithm with real backbone traffic and routing data, and demonstrate that it is fast, accurate, robust, and flexible.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 5 )