By Topic

Coordinated, distributed, formal energy management of chip multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Juang, P. ; Dept. of Electr. Eng. & Comput. Sci., Princeton Univ., NJ, USA ; Wu, Q. ; Li-Shiuan Peh ; Martonosi, M.
more authors

Designers are moving toward chip-multiprocessors (CMPs) to leverage application parallelism for higher performance while keeping design complexity under control. However, to date, no power management techniques have been proposed for coordinated power control of multiple processor cores. In this paper, we illustrate how the use of local, per-tile dynamic voltage and frequency scaling (DVFS) techniques can result in tiles counteracting each others' power management policies, significantly hurting chip power-performance. We then propose a coordinated DVFS scheme for CMPs, which eliminates the oscillations and ensures efficient and resilient DVFS control. Specifically, our proposed technique incorporates thread information collected at runtime across the chip. In addition, by extending a control-theoretic local DVFS control technique toward DVFS for chip-multiprocessors, our technique prescribes DVFS settings formally at each tile, thus ensuring stable, distributed, coordinated DVFS control of a CMP. Experimental results show that our technique achieves a 15.5% improvement in energy-delay product over a CMP with no DVFS control, and a 1% improvement in energy-delay product against the latest state-of-the-art local DVFS scheme.

Published in:

Low Power Electronics and Design, 2005. ISLPED '05. Proceedings of the 2005 International Symposium on

Date of Conference:

8-10 Aug. 2005