By Topic

Measuring and modeling transient insulator response to charging: the contribution of surface potential studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
MolinieĢ, P. ; Dept. Energie, Supelec, Gif-sur-Yvette, France

What has been the contribution of surface potential studies during the last four decades to our understanding of insulation physics? Which are the promising techniques emerging in this field? The present review covers the industrial context accounting for the development of surface potential measurements on insulating materials, the way they have been implemented, as well as the great variety of models produced to explain the charging and potential decay mechanisms. Several polarization or transport processes can be responsible for the decay of the potential. Though most of the models initially stemmed from electrostatics and semiconductor physics, around the notion of mobility, experiments on polymers required "thermodynamic" models, describing progressive charge detrapping. We also underline here that the three main different physical processes likely to be involved in the potential decay (dipolar relaxation, dispersive transport, slow detrapping) can lead in disordered materials to the same time response, the challenge being here is to design inventive new procedures to distinguish them. This comment also applies to most of electrical measurements on disordered materials. Kelvin probe microscopy, return voltage and thermostimulated potential measurements also illustrate the multiform development of surface potential measurement techniques, as their future prospects.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:12 ,  Issue: 5 )