By Topic

The study of short-term traffic flow forecasting based on theory of chaos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Wang ; Dept. of Civil Eng., Tsinghua Univ., Beijing, China ; Qixin Shi ; Huapu Lu

Traffic flow forecasting has attracted much interest in current literature because of its importance in both the theoretical and empirical aspects of ITS deployment. Many models and methods have been presented in the past. But most of them regard the transportation system as the linear system and using the linear theory to predict the traffic flow. In fact, transportation system is a nonlinear system and traffic flow data exhibits chaotic properties. In this paper, we try to use the chaos theory to forecast the traffic flow in a short-term. Usually there is noise in the collected data which decrease the forecasting precision. So we denoise the data using wavelet transform before forecasting in this paper. The experiment is performed for inductance loop data collected in five minutes interval from the viaduct of Yan'an road in Shanghai in China. And at last our study concludes that techniques based on phase space reconstruction can be used to predict the traffic flow in a short-term. Furthermore, the prediction result is accurate and reliable.

Published in:

Intelligent Vehicles Symposium, 2005. Proceedings. IEEE

Date of Conference:

6-8 June 2005