By Topic

Using 1-D Models to Interpret the Reflectance Anisotropy of 3-D Canopy Targets: Issues and Caveats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Widlowski, J.-L. ; Inst. of the Environ. & Sustainability, Joint Res. Centre of the Eur. Comm., Ispra, Italy ; Pinty, B. ; Lavergne, T. ; Verstraete, M.M.
more authors

This paper evaluates 1) to what extent one-dimensional (1-D) models can be used to represent the magnitude and directionality of the surface reflectance field of heterogeneous canopy targets at different spatial resolutions, and 2) whether this usage results in significant biases in the estimation of the corresponding state variables. It will be seen that when both the 1-D and three-dimensional (3-D) models account for all features of the measured radiation field, then—in the absence of further information regarding the nature and structure of the target—the use of a 3-D model may amount to an over-interpretation of the available data. The simplified surface structure formulation contained within the 1-D model, on the other hand, may affect the values of the state variables that such models will retrieve. This is because the shape of the reflectance anisotropy of the 3-D target is almost always different from that of a structurally homogeneous (1-D) canopy with the same state variable values but no foliage clumping. By consequence the 1-D canopies that are capable of mimicking the bell (or bowl) shaped reflectance anisotropy of 3-D targets will tend to feature lower leaf area index, higher soil albedo and, in particular, predominantly erectophile (or plagiophile) leaf normal distributions.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 9 )