Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Achieving minimum coverage breach under bandwidth constraints in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng, M.X. ; Dept. of Comput. Sci, Missouri Univ., Rolla, MO, USA ; Lu Ruan ; Weili Wu

This paper addresses the coverage breach problem in wireless sensor networks with limited bandwidths. In wireless sensor networks, sensor nodes are powered by batteries. To make efficient use of battery energy is critical to sensor network lifetimes. When targets are redundantly covered by multiple sensors, especially in stochastically deployed sensor networks, it is possible to save battery energy by organizing sensors into mutually exclusive subsets and alternatively activating only one subset at any time. Active nodes are responsible for sensing, computing and communicating. While the coverage of each subset is an important metric for sensor organization, the size of each subset also plays an important role in sensor network performance because when active sensors periodically send data to base stations, contention for channel access must be considered. The number of available channels imposes a limit on the cardinality of each subset. Coverage breach happens when a subset of sensors cannot completely cover all the targets. To make efficient use of both energy and bandwidth with a minimum coverage breach is the goal of sensor network design. This paper presents the minimum breach problem using a mathematical model, studies the computational complexity of the problem, and provides two approximate heuristics. Effects of increasing the number of channels and increasing the number of sensors on sensor network coverage are studied through numerical simulations. Overall, the simulation results reveal that when the number of sensors increases, network lifetimes can be improved without loss of network coverage if there is no bandwidth constraint; with bandwidth constraints, network lifetimes may be improved further at the cost of coverage breach.

Published in:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE  (Volume:4 )

Date of Conference:

13-17 March 2005