By Topic

Single-chip multiple-frequency filters based on contour-mode aluminum nitride piezoelectric micromechanical resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Piazza, G. ; Berkeley Sensors & Actuators Center, California Univ., Berkeley, CA, USA ; Stephanou, P.J. ; Wijesundara, M.B.J. ; Pisano, A.P.

This paper reports experimental results on a new class of single-chip multiple-frequency (up to 236 MHz) filters that are based on low motional resistance contour-mode aluminum nitride piezoelectric micromechanical resonators. For the first time, aluminum nitride rectangular plates and rings have been electrically cascaded to yield high performance, low insertion loss (as low as 4dB at 93 MHz) micromechanical band pass filters. This novel technology could revolutionize wireless communication systems by allowing the co-fabrication of multiple frequency filters (IF and RF) on the same chip, therefore reducing form factors and manufacturing costs. In addition, these filters require terminations on the order of kΩ, thereby making possible their direct interface with standard 50 Ω systems.

Published in:

Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on  (Volume:2 )

Date of Conference:

5-9 June 2005