By Topic

Speech Enhancement Based on Minimum Mean-Square Error Estimation and Supergaussian Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Martin, R. ; Inst. of Commun. Acoust., Ruhr-Univ. Bochum, Germany

This paper presents a class of minimum mean-square error (MMSE) estimators for enhancing short-time spectral coefficients of a noisy speech signal. In contrast to most of the presently used methods, we do not assume that the spectral coefficients of the noise or of the clean speech signal obey a (complex) Gaussian probability density. We derive analytical solutions to the problem of estimating discrete Fourier transform (DFT) coefficients in the MMSE sense when the prior probability density function of the clean speech DFT coefficients can be modeled by a complex Laplace or by a complex bilateral Gamma density. The probability density function of the noise DFT coefficients may be modeled either by a complex Gaussian or by a complex Laplacian density. Compared to algorithms based on the Gaussian assumption, such as the Wiener filter or the Ephraim and Malah (1984) MMSE short-time spectral amplitude estimator, the estimators based on these supergaussian densities deliver an improved signal-to-noise ratio.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 5 )